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Spatial curvature effects on molecular transport by diffusion
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For a substance diffusing on a curved surface, we obtain an explicit relation valid for very small values of
the time, between the local concentration, the diffusion coefficient, the intrinsic spatial curvature, and the time.
We recover the known solution of Fick’s law of diffusion in the flat space limit. In the biological context, this
result would be useful in understanding the variations in the diffusion rates of integral proteins and other
molecules on membranes.

PACS numbg(s): 87.10:+e, 02.90+p

I. INTRODUCTION nomena, an explicit expression relating the concentration of
the diffusing substance, the intrinsic spatial curvature expe-
Transport of enzymes, Charged ions, and metabolic Suﬂjenced by it, the diffusion coefficient and the time.
stances within biological cells and tissues and across cell
membranes is one of the major processes which sustains and
guides life. Indeed, extracellular and intracellular transport of  Consider diffusion of a substance described by its concen-
substances can well be considered to be the most importatration C(x,t) from a spatial pointk where it has been re-
and pervasive among all the life-supporting biological activi-leased on the cell, to another poiit For a particular time
ties. slice, the line elemends between each pair of neighboring
Molecular transport across cell membranes by passive diffoints on the spatial surface is given by
fusion or in accordance with Fick's law is a well-studied n
area. However in the available literature on the subject, no ds?= > gi;()dx dx, (1)
mention has been made of how the local curvature of the cell =1

I rt, if II, in this pr . Molecules rel . . .
plays a part, if at all, in this process. Molecules released at \?vheredxk denote the coordinate differences between neigh-

specific location on the cell surface or on the nuclear mem; oring pointsn is the spatial dimension, arg; denotes the

H . ’ g . ’ J !
bran_e diffuse along the curved membrane surface to anoth Letric. We choose to work with a Riemannian signature for
location. the metric.

f lth's knr(])vxll_n .Lhat télerlmallgg(ljtanoln pelrm|tsiltﬁ§eral ld|f%Jst|orf1 The usual form of Fick’s law relates the current density or
Ol P ospho Iplh ?n.d gbylco 'P! rr;obgclu es V\II' n abea N OAthe flux of material per unit areg(x,t) to its concentration
planar phospholipid bilayers of biological membranes. A - iootin flat space,

lipid molecule can diffuse several micrometers per second a

II. DIFFUSION ON CURVED SURFACES

a temperature of 37°C. It has also been established experi- ji(x,t)=—Dag,C(x,t), 2
mentally that many important proteins freely float within the o o
plane of the membrane. whereD denotes the diffusion coefficient, denotes the gra-

Measurements have shown that the rates of diffusion offient operator, an€(x,t) is the field variable denoting the
proteins in biomembranes are considerably lower than thosgoncentration. It is assumed here that the diffusion coeffi-
seen in artificial membranés,2]. The physical structure and cient is independent of the concentration of the diffusing
the dynamical changes occurring on a membrane surfacgbstance. _ .
would well be expected to play an important role in deter- I curved space, while formulating the problem, one must
mining the lateral mobility of molecules on its surface. incorporate the. effects of the |ntr|n_5|c s_patlal curvature of the

The metabolism and synthesis of fatty acids and phosphoiurface on which the substance is diffusing. We make the
lipids occur in the smooth endoplasmic reticulum, and theSimplifying assumption that in the infinitesimal neighbor-
rough endoplasmic reticulum is a site of protein synthesis. 11100d of any point, the diffusion properties are the same in all
is well known that in many cells these extensively curvegdirections and thab does not depend upon the position and
and folded membrane vesicles are continuous with théh€ concentration of the diffusing material.
nuclear and cell membranes. In the cytosol also, these folds Transport of the substance by diffusion into and out of the
distort the homogeneity in the spatial distribution of the cy-invariant volume element/gd"x surrounding the poing is
tosolic fluid. Transport of a substance by diffusion shoulddiven by the conservation equation,
therefore be described by a corrected form of Fick's law, v
modified to take into account the local curvature of the sur- [oC(x,)]/at ==Vij(x1), ()]
face through which it moves. In this paper we discuss how tavhere V; denotes the covariant derivative and includes the
take care of curvature effects and also give for transient phechristoffel connectiod’®;, , V;jk=4;j*+T%,j', and we have

considered garametricdependence of on the timet.
Performing a covariant differentiation of E) with re-
*Electronic address: janaki@serc.iisc.ernet.in, spect tox, and substituting Eq3) into it we then obtain the
janaki@hve.iisc.ernet.in correct form of Fick’s second law of diffusion,
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[dC(x,t)]/at =—=DOC(x,1), 4) lim C(x,x’,t)=C(x,t) (7
x'—0

where we have uséd to denote the-dimensional Laplace-
Beltrami operator. For flat three-dimensional spaceye- and to the physical boundary condition
duces to the usual three-dimensional Laplacian.

It was shown in Ref[3] that at least in mitochondrial
inner membranes, the diffusion coefficiedtof intramem- lim C(x,x",t)=8(x,x"). 8
brane particles shows an inverse correlation with their con- t=0
centration, implying that the proper form of Fick's law re-
flecting the concentration dependence bBf should be
studied, rather than Ed4). In our work, however, we con-
sider only the simplest form of Fick’'s law with a
concentration-independent diffusion coefficient, in order to[4_6]'
see how far just the spatial curvature effects could modify
the known result. o Nt 112

It becomes particularly interesting to learn about the con- C(X.X",t)= e e TCIEATZ X x") Q(x,x' 1),
figuration of the released substance during the initial infini- 9
tesimal time intervals to see how the intrinsic curvature of
the cell would influence diffusive transport on the membran&yhere the biscalas(x,x') equals half the square of the geo-

surface, and hence its configuration at later times. desic distance betweem and x' and A(x,x’) is the
In order to solve Eq(4), we rescale the time parameter \/gnvieck—Morette determinant

by: t—Dt, so that Eq(4) now reads

This enables us to obtain a well-defined explicit solution
for C(x,t) which is valid for small values of, in terms of
the spatial curvature. The solution to E§) is well known

(4mt)™2

A(xX)=—(g(x))~Ydef — ;g o(x,x)1(g(x") "% (10)

[9C(x, 1) /ot =DIC(x,t) = nC(X,1), (®  This is a biscalar quantity which reduces to unity in flat
space.

In curved space, one can expafi@x,x’) in a series ex-
I;,')ansion in powers of the curvature by working in Riemann
g_‘ormal coordinateg which define a locally inertial system in

and the parametet now has the dimensions of length
squared. We have introduced a drag tep@ with >0
which can be thought to account for negative concentratio
changes due to possible frictional effects on the motion o
the molecules. We have introduced it here just for the sake o
mathematical convenience, and at the end of the calculation¥
it can be set to zero. 112 L 14 1 « 3

In the actual physical situation, of course, the drag term i@ (XD =) =14 17 Ragy yP+0(y?), (1)
very much present, and receives contributions from the dra
arising from the pericellular matrix viscosity, from steric ef-
fects, and from transient binding to relatively immobile
structureq1]. Also in the actual situation, the term is not
constant and has a coupling with the concentration gradien
We have, however, restricted ourselvesyto 0 for the sake The function{}(x,x’,t) has a series expansion in the co-
of simplicity in this paper. incidence limitx’ —sx

We assume that the molecules diffuse freely on the sur- '
face without interacting or binding with any other molecules.

e neighborhood of the point’. In these coordinatels7],
th origin atx’, A(x,x")=(g(x))"*?, so that

fherex is regarded as a function of the Riemann normal
coordinatesy, such thatx—x’ asy—0. In the coincidence
limit, and for our purposes, it is only the first term on the
tht hand side of Eq(11) which is relevant for the calcula-
fons.

We write Eq.(5) in a point-separated form as lim Q(x,x",t)= > tE(x), (12)
, k=0
X —X

[dC(x,x", 1))/ at =(Ox— 1) C(x,X",1), (6) o o o
g valid in the limitt—0, whereE,(x) are known coefficients
where the biscala€(x,x’,t) is subject to the condition known in the literature as Gilkey coefficier{t4—7]:
EIER E1R 21RR’“’lR R'”P"1DR1D
0=l BaTg T Femolg ) Taggnee T agg et T T gg R g
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+9R,,R R = PR, R RPTHER

uvpo RMV&'BRPUQB_'— %) R RMaP'BRygB]

uvpo nvpo
~ %0+ 5 p0n+ 5 (O 0+ 15 7.,7"— § 7°— 55 RO7— 5 R 0.5~ 35 R, 7*+ 15 7°R

- 31_0 77R2+ ﬁ) nRuvR#V_ 11?) nRMvp(rR#Vpa—' (13)

Here | denotes the identity matrixR stands for the Ricci

scalar, and the semicolon denotes a covariant differentiation.C(x,t)= —nlze*XZ’4Dt
Although the fourth Gilkey coefficient has also been calcu- (47D1)
Iated' in the Ilterature, we have displayed above only terms up n(n—1) n(n—1)(3n+1)
to third order in the Riemann curvature. x| 1+ KDt + KDt)?
i i ; 6 360 ( )
Now rescalingt back toDt, we obtain the solution we

seek for diffusion of molecules in the presence of a drag term

n(n—1
in n spatial dimensions for transient times: %[7(n— 1)3(5n—1)+61(n—1)>2
C(xt)=——e e  TXODNLZ Y 0) > (D) Ey(X). +68n+28](KDt)3+ - - - |. 18
)= e (%0 2, (DO Ey ](KDt) (18)
(14)

K>0 corresponds to the spherical surfaces, while surfaces

For the standard diffusion equation without theterm, and ~ With K<<0 correspond to hyperboloid ones=0 are flat
in flat space, the only Gilkey coefficient which contributes is Euclidean surfaces.

sion can be quantified in terms of a quantity which depends
C(x,t)= 1/[(4mDt)"2] o~ X2/4Dt (15) upon the Euler characteristjg: of the surface within which

the amphiphile molecules diffusgg is obtained from the

In a recent papef8], Gompper and Goos suggested thatGaUSS'an curvature using the Gauss-Bonnet theorem

the diffusion of amphiphilic molecules within a monolayer at
the oil-water interface of the microemulsion phase in an oil- f dSK=2myxg, (19
water-amphiphile mixture can be used to measure the aver-
age Gaussian curvature of the monolayer. They considergghere the integral is over a closed surf&t should there-
surfaces of constant curvature. Resll), discussed here r0 pe possible, in the case of surfaces of approximately
for the concentration, is also valid for surfaces of varying.gnstant area, to express res) in terms of the topologi-
curvature. o _ cal invariants characterizing them, after appropriately scaling
In fact, from Eq.(14) it is an easy matter to obtain & them. However, this exercise is beyond the scope of this
general solution to the diffusion equation fordimensional  aner Because of their enormous complexity, biological
spaces with arbitrary constant curvatukefor which the  ;g|is and membranes do not in general have isotropic and
value of the Riemann curvature depends neither on the CoOfomogeneous compositions, and the membrane surfaces are
dinatex nor on the planar direction at For such spaces, the o6 often than not of varying curvature; in these situations,

Riemann curvature is given in terms of their megig by one needs to use Eq4.3) and (14) rather than Eq(18).
For the specific case of diffusion in two dimensions such
Rijii =K(9iji —Gigj)  (for  n=3), (16)  as on membranes, the coefficients in E) simplify con-
_ _ o siderably because in these dimensions both the Riemann ten-
from which the Gilkey coefficients turn out to be sor Ry, and the Ricci curvature scal® have only one
component, and both the Riemann tensor and the Ricci ten-
Eo=1, sorR;; can be expressed in terms of the curvature sd&lar
El:n(n—l)K’ EZ:n(n—l)(3n+1)K2' an Rijki = 2 R(Gik9ji — 9t Gjk) (20
6 360
and
n(n_l) R”:%Rg” (21)

Es= {7(n—1)3(5n—1)+61n—1)2

|
X It must be borne in mind that in our treatment, we have
+68n+ 281 K3, regarded time as aparameter and the indices
ij,kl,u,v,a B, etc. label spatial dimensions only, for we
We then find that expressidt4) for the concentration of the are working on a particular time slice at each instant of time.
diffusing substance has the following dependance on the We consider the simplest example of diffusion of a sub-

Gaussian curvaturk: stance on the surface of a sphere of constant radiesr a 2
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sphere, the Ricci curvature scalar is molecules have already traversed over the curved surface of
the cell. However, it must be borne in mind that the diffusion
2 times measured and calculated, in fact, calibrate distances
R=-. diff from the fl di h k
r2 ifferent from the flat space distances, when one makes a

comparison between diffusion rates on different cells and on
In fact, in this case, the Gaussian curvatiire 1/r2. Substi- membranes whose curvatures differ from point to point and
tuting this value ofR into Egs.(13), (20), and (21), or by  from one another. What we intend to point out here is that
simply using Eq(17), the Gilkey coefficients reduce for this one must remember that flat space methods must not be ap-

example to plied when one is talking about biological membranes and
surfaces which are very curved, or even for surfaces with

1 1 4 varying curvature, for which one must apply the coefficients

Eo=1, Ei=_—; Ezzﬁ’ Eszﬁa (22)  in Eq. (13). We have not included realistic effects such as

2 1
3r drag terms arising from the viscosity of the cytosolic fluid,
giving the following result for the concentration of the dif- @hd we have considered also only lateitato-dimensional

fusing substance of an initial unit amount, at a point distant diffusion in this work.

from the point of its release on the surface of the sphere, at a !t i seen that curvature effects considerably modify the
time t: solution of the diffusion problem. In a biological context, it

is well known that depending upon the cell type, between

1 ) Dt 1 /Dt 30% and 90% of all integral proteins in the plasma mem-
C(x,t)= 4—Dt)e‘X /bt 1+—+ Bl 2 brane are freely mobile, and, among these, the lateral diffu-
(4m 3r r sion rate of a protein in an intact membrane is around 10-30
4 [Dt)3 times lower than that of the same protein embedded in syn-
+— _) + (23  thetic liposome$1,2,9. It has been suggested that this could
315| 2 be because the mobility of the proteins might be hampered

. . _ by interactions with the rigid submembrane cytoskeleton.
The result obtained in Ref8] for the mean square displace- ~ |n arriving at those diffusion rates, these authors consid-
ment of a particle diffusing on a sphere is essentially equivagred only the normal form of Fick’s law for flat space. Use of
lent to the leading and next to leading order terms in Edthe correct form of Fick’s law, taking into account the vary-
(23. ing curvatures of the membranes on which the protein mol-

In the series expansion in Eqd4), (18), and(23), valid  ecules diffuse, must be made when seeking to explain such
for very smallt values, it is assumed that the curvature termsheories.

are small in comparison with the flat space result. Care must

be taken before applying the actual valueg,dD, andr to . DISCUSSION
these expressions to ensure that this assumption is satisfied.
For a substance having @ value of 10°® cm?s ! re- We have shown how the curvature of the surface through

leased on the surface of a spherical cell of radiug.m, which molecules diffuse modify the usual form of Fick's
diffusing through a distance of 0.%m in time 1 ms, one law, and the relation between the concentration of the diffus-

obtains a calculated value of 4259.4%510" per cnft for its @ng molecules, the _diffusion const.ant and the dme. Many
concentration, using the usual expressiga. (15)] for flat |ntramembrar_1e particles are electrically g:hayged, and, when
space diffusion, while the improved solutipag. (23)] gives they arg_subjected to .an'ext'ernal electric field, move from
an additional correction of 0.034 per &rto this—a differ- their original random distribution to a more ordered distribu-

ence of 3.4% from the flat space result, and a deviation o fon. It would _be_interesting to see the_effect of extgrnal
0.33% from the flat space results for ’a time duration Ofelectromagnetm fields on molecules which are electrically

10°* s, while for aD value of 107 cn?s L, the deviations Charged. diffusing on curved surfaces.
from the flat space result for time durations of 1 and 0.1 ms
are 0.33% and 0.033% respectively.

The experimentally measured values of the concentra- | would like to acknowledge support from the Jawaharlal
tions, of course, correspond to the corrected values and thidehru Center for Advanced Scientific Research, Bangalore,
curvature-corrected Fick’s lajeq. (14)], since the diffusing during the course of this work.
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