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Spatial curvature effects on molecular transport by diffusion
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~Received 31 August 1999; revised manuscript received 10 November 1999!

For a substance diffusing on a curved surface, we obtain an explicit relation valid for very small values of
the time, between the local concentration, the diffusion coefficient, the intrinsic spatial curvature, and the time.
We recover the known solution of Fick’s law of diffusion in the flat space limit. In the biological context, this
result would be useful in understanding the variations in the diffusion rates of integral proteins and other
molecules on membranes.

PACS number~s!: 87.10.1e, 02.90.1p
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I. INTRODUCTION

Transport of enzymes, charged ions, and metabolic s
stances within biological cells and tissues and across
membranes is one of the major processes which sustains
guides life. Indeed, extracellular and intracellular transpor
substances can well be considered to be the most impo
and pervasive among all the life-supporting biological acti
ties.

Molecular transport across cell membranes by passive
fusion or in accordance with Fick’s law is a well-studie
area. However in the available literature on the subject,
mention has been made of how the local curvature of the
plays a part, if at all, in this process. Molecules released
specific location on the cell surface or on the nuclear me
brane diffuse along the curved membrane surface to ano
location.

It is known that thermal agitation permits lateral diffusio
of phospholipid and glycolipid molecules within a leaflet
planar phospholipid bilayers of biological membranes.
lipid molecule can diffuse several micrometers per secon
a temperature of 37°C. It has also been established ex
mentally that many important proteins freely float within t
plane of the membrane.

Measurements have shown that the rates of diffusion
proteins in biomembranes are considerably lower than th
seen in artificial membranes@1,2#. The physical structure an
the dynamical changes occurring on a membrane sur
would well be expected to play an important role in det
mining the lateral mobility of molecules on its surface.

The metabolism and synthesis of fatty acids and phosp
lipids occur in the smooth endoplasmic reticulum, and
rough endoplasmic reticulum is a site of protein synthesis
is well known that in many cells these extensively curv
and folded membrane vesicles are continuous with
nuclear and cell membranes. In the cytosol also, these f
distort the homogeneity in the spatial distribution of the c
tosolic fluid. Transport of a substance by diffusion shou
therefore be described by a corrected form of Fick’s la
modified to take into account the local curvature of the s
face through which it moves. In this paper we discuss how
take care of curvature effects and also give for transient p
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nomena, an explicit expression relating the concentration
the diffusing substance, the intrinsic spatial curvature ex
rienced by it, the diffusion coefficient and the time.

II. DIFFUSION ON CURVED SURFACES

Consider diffusion of a substance described by its conc
tration C(x,t) from a spatial pointx where it has been re
leased on the cell, to another pointx8. For a particular time
slice, the line elementds between each pair of neighborin
points on the spatial surface is given by

ds25 (
i , j 51

n

gi j ~x!dxidxj , ~1!

wheredxk denote the coordinate differences between nei
boring points,n is the spatial dimension, andgi j denotes the
metric. We choose to work with a Riemannian signature
the metric.

The usual form of Fick’s law relates the current density
the flux of material per unit area,j (x,t) to its concentration
gradient in flat space,

j i~x,t !52D] iC~x,t !, ~2!

whereD denotes the diffusion coefficient,] i denotes the gra-
dient operator, andC(x,t) is the field variable denoting the
concentration. It is assumed here that the diffusion coe
cient is independent of the concentration of the diffusi
substance.

In curved space, while formulating the problem, one m
incorporate the effects of the intrinsic spatial curvature of
surface on which the substance is diffusing. We make
simplifying assumption that in the infinitesimal neighbo
hood of any point, the diffusion properties are the same in
directions and thatD does not depend upon the position a
the concentration of the diffusing material.

Transport of the substance by diffusion into and out of
invariant volume elementAgdnx surrounding the pointx is
given by the conservation equation,

@]C~x,t !#/]t 52¹ i j
i~x,t !, ~3!

where¹ i denotes the covariant derivative and includes
Christoffel connectionGk

il , ¹ i j
k5] i j

k1Gk
il j

l , and we have
considered aparametricdependence ofC on the timet.

Performing a covariant differentiation of Eq.~2! with re-
spect tox, and substituting Eq.~3! into it we then obtain the
correct form of Fick’s second law of diffusion,
4648 © 2000 The American Physical Society
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@]C~x,t !#/]t 52DhC~x,t !, ~4!

where we have usedh to denote then-dimensional Laplace-
Beltrami operator. For flat three-dimensional space,h re-
duces to the usual three-dimensional Laplacian.

It was shown in Ref.@3# that at least in mitochondria
inner membranes, the diffusion coefficientD of intramem-
brane particles shows an inverse correlation with their c
centration, implying that the proper form of Fick’s law re
flecting the concentration dependence ofD should be
studied, rather than Eq.~4!. In our work, however, we con
sider only the simplest form of Fick’s law with
concentration-independent diffusion coefficient, in order
see how far just the spatial curvature effects could mod
the known result.

It becomes particularly interesting to learn about the c
figuration of the released substance during the initial infi
tesimal time intervals to see how the intrinsic curvature
the cell would influence diffusive transport on the membra
surface, and hence its configuration at later times.

In order to solve Eq.~4!, we rescale the time paramet
by: t→Dt, so that Eq.~4! now reads

@]C~x,t !#/]t 5hC~x,t !2hC~x,t !, ~5!

and the parametert now has the dimensions of lengt
squared. We have introduced a drag termhC with h.0
which can be thought to account for negative concentra
changes due to possible frictional effects on the motion
the molecules. We have introduced it here just for the sak
mathematical convenience, and at the end of the calculat
it can be set to zero.

In the actual physical situation, of course, the drag term
very much present, and receives contributions from the d
arising from the pericellular matrix viscosity, from steric e
fects, and from transient binding to relatively immobi
structures@1#. Also in the actual situation, theh term is not
constant and has a coupling with the concentration gradi
We have, however, restricted ourselves toh50 for the sake
of simplicity in this paper.

We assume that the molecules diffuse freely on the s
face without interacting or binding with any other molecule
We write Eq.~5! in a point-separated form as

@]C~x,x8,t !#/]t 5~hx2h!C~x,x8,t !, ~6!

where the biscalarC(x,x8,t) is subject to the condition
-
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lim
x8→0

C~x,x8,t !5C~x,t ! ~7!

and to the physical boundary condition

lim
t→0

C~x,x8,t !5d~x,x8!. ~8!

This enables us to obtain a well-defined explicit soluti
for C(x,t) which is valid for small values oft, in terms of
the spatial curvature. The solution to Eq.~6! is well known
@4–6#,

C~x,x8,t !5
1

~4pt !n/2
e2hte2s(x,x8)/2tD1/2~x,x8!V~x,x8,t !,

~9!

where the biscalars(x,x8) equals half the square of the ge
desic distance betweenx and x8 and D(x,x8) is the
VanVleck–Morette determinant

D~x,x8!52„g~x!…21/2det@2] i] j 8s~x,x8!#„g~x8!…21/2. ~10!

This is a biscalar quantity which reduces to unity in fl
space.

In curved space, one can expandD(x,x8) in a series ex-
pansion in powers of the curvature by working in Riema
normal coordinatesy which define a locally inertial system in
the neighborhood of the pointx8. In these coordinates@7#,
with origin at x8, D(x,x8)5„g(x)…21/2, so that

D1/2~x,x8!5„g~x!…21/4511 1
12 Rabyayb1O~y3!, ~11!

where x is regarded as a function of the Riemann norm
coordinatesy, such thatx→x8 as y→0. In the coincidence
limit, and for our purposes, it is only the first term on th
right hand side of Eq.~11! which is relevant for the calcula
tions.

The functionV(x,x8,t) has a series expansion in the c
incidence limitx8→x,

lim
x8→x

V~x,x8,t !5 (
k50

`

tkEk~x!, ~12!

valid in the limit t→0, whereEk(x) are known coefficients
known in the literature as Gilkey coefficients@4–7#:
E05I , E15
R

6
2h, E25

1

2 S R

6
2h D 2

2
1

180
RmnRmn1

1

180
RmnrsRmnrs1

1

30
hR2

1

6
hh,

E35
1

7!
@18h2R117R;mR;m22Rmn;rRmn;r24Rmn;rRmr;n19Rmnrs;tR

mnrs;t128RhR28RmnhRmn

124RmnRmr;n
r112RmnrshRmnrs1 35

9 R32 14
3 RRmnRmn1 14

3 RRmnrsRmnrs2 208
9 RmnRm

rRnr
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1 64
3 RmnRrsRmrns2 16

3 RmnRm
rstR

nrst1 44
9 RmnrsRmnabRrs

ab1 80
9 RmnrsRmarbRn

a
s

b]

2 1
60 h2h1 1

12 hhh1 1
12 ~hh!h1 1

12 h ;mh ;m2 1
6 h32 1

36 Rhh2 1
90 Rabh ;ab2 1

30 R;mh ;m1 1
12 h2R

2 1
30 hR21 1

180 hRmnRmn2 1
180 hRmnrsRmnrs. ~13!
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Here I denotes the identity matrix,R stands for the Ricci
scalar, and the semicolon denotes a covariant differentia
Although the fourth Gilkey coefficient has also been calc
lated in the literature, we have displayed above only terms
to third order in the Riemann curvature.

Now rescalingt back to Dt, we obtain the solution we
seek for diffusion of molecules in the presence of a drag te
in n spatial dimensions for transient times:

C~x,t!5
1

~4pDt!n/2
e2hDte2s(x,0)/2DtD1/2~x,0!(

k50

`

~Dt !kEk~x!.

~14!

For the standard diffusion equation without theh term, and
in flat space, the only Gilkey coefficient which contributes
E0, and in this case we recover the known result

C~x,t !5 1/@~4pDt !n/2# e2x2/4Dt. ~15!

In a recent paper@8#, Gompper and Goos suggested th
the diffusion of amphiphilic molecules within a monolayer
the oil-water interface of the microemulsion phase in an
water-amphiphile mixture can be used to measure the a
age Gaussian curvature of the monolayer. They consid
surfaces of constant curvature. Result~14!, discussed here
for the concentration, is also valid for surfaces of varyi
curvature.

In fact, from Eq. ~14! it is an easy matter to obtain
general solution to the diffusion equation forn-dimensional
spaces with arbitrary constant curvatureK for which the
value of the Riemann curvature depends neither on the c
dinatex nor on the planar direction atx. For such spaces, th
Riemann curvature is given in terms of their metricgi j by

Ri jkl 5K~gikgjl 2gil gjk! ~ for n>3!, ~16!

from which the Gilkey coefficients turn out to be

E051,

E15
n~n21!

6
K, E25

n~n21!~3n11!

360
K2, ~17!

E35
n~n21!

937!
$7~n21!3~5n21!161~n21!2

168n128%K3.

We then find that expression~14! for the concentration of the
diffusing substance has the following dependance on
Gaussian curvatureK:
n.
-
p

m

t

-
r-

ed

r-

e

C~x,t !5
1

~4pDt !n/2
e2x2/4Dt

3S 11
n~n21!

6
KDt1

n~n21!~3n11!

360
~KDt !2

1
n~n21!

937!
@7~n21!3~5n21!161~n21!2

168n128#~KDt !31••• D . ~18!

K.0 corresponds to the spherical surfaces, while surfa
with K,0 correspond to hyperboloid ones—K50 are flat
Euclidean surfaces.

It is shown in Ref.@8# that the structure of a microemu
sion can be quantified in terms of a quantity which depe
upon the Euler characteristicxE of the surface within which
the amphiphile molecules diffuse.xE is obtained from the
Gaussian curvature using the Gauss-Bonnet theorem

E dSK52pxE , ~19!

where the integral is over a closed surfaceS. It should there-
fore be possible, in the case of surfaces of approxima
constant area, to express result~18! in terms of the topologi-
cal invariants characterizing them, after appropriately sca
them. However, this exercise is beyond the scope of
paper. Because of their enormous complexity, biologi
cells and membranes do not in general have isotropic
homogeneous compositions, and the membrane surface
more often than not of varying curvature; in these situatio
one needs to use Eqs.~13! and ~14! rather than Eq.~18!.

For the specific case of diffusion in two dimensions su
as on membranes, the coefficients in Eq.~13! simplify con-
siderably because in these dimensions both the Riemann
sor Ri jkl and the Ricci curvature scalarR have only one
component, and both the Riemann tensor and the Ricci
sor Ri j can be expressed in terms of the curvature scalarR:

Ri jkl 5
1
2 R~gikgjl 2gil gjk! ~20!

and

Ri j 5
1
2 Rgi j . ~21!

It must be borne in mind that in our treatment, we ha
regarded time as a parameter and the indices
i , j ,k,l ,m,n,a,b, etc. label spatial dimensions only, for w
are working on a particular time slice at each instant of tim

We consider the simplest example of diffusion of a su
stance on the surface of a sphere of constant radiusr. For a 2
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sphere, the Ricci curvature scalar is

R5
2

r 2
.

In fact, in this case, the Gaussian curvatureK51/r 2. Substi-
tuting this value ofR into Eqs.~13!, ~20!, and ~21!, or by
simply using Eq.~17!, the Gilkey coefficients reduce for thi
example to

E051, E15
1

3r 2
, E25

1

15r 4
, E35

4

315r 6
, ~22!

giving the following result for the concentration of the di
fusing substance of an initial unit amount, at a point distanx
from the point of its release on the surface of the sphere,
time t:

C~x,t !5
1

~4pDt !
e2x2/4DtF11

Dt

3r 2
1

1

15S Dt

r 2 D 2

1
4

315S Dt

r 2 D 3

1 . . . G . ~23!

The result obtained in Ref.@8# for the mean square displace
ment of a particle diffusing on a sphere is essentially equ
lent to the leading and next to leading order terms in E
~23!.

In the series expansion in Eqs.~14!, ~18!, and~23!, valid
for very smallt values, it is assumed that the curvature ter
are small in comparison with the flat space result. Care m
be taken before applying the actual values oft, D, and r to
these expressions to ensure that this assumption is satis

For a substance having aD value of 1026 cm2 s21 re-
leased on the surface of a spherical cell of radius 1mm,
diffusing through a distance of 0.5mm in time 1 ms, one
obtains a calculated value of 4259.47513104 per cm2 for its
concentration, using the usual expression@Eq. ~15!# for flat
space diffusion, while the improved solution@Eq. ~23!# gives
an additional correction of 0.034 per cm2 to this—a differ-
ence of 3.4% from the flat space result, and a deviation
0.33% from the flat space results for a time duration
1024 s, while for aD value of 1027 cm2 s21, the deviations
from the flat space result for time durations of 1 and 0.1
are 0.33% and 0.033% respectively.

The experimentally measured values of the concen
tions, of course, correspond to the corrected values and
curvature-corrected Fick’s law@Eq. ~14!#, since the diffusing
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molecules have already traversed over the curved surfac
the cell. However, it must be borne in mind that the diffusi
times measured and calculated, in fact, calibrate distan
different from the flat space distances, when one make
comparison between diffusion rates on different cells and
membranes whose curvatures differ from point to point a
from one another. What we intend to point out here is t
one must remember that flat space methods must not be
plied when one is talking about biological membranes a
surfaces which are very curved, or even for surfaces w
varying curvature, for which one must apply the coefficien
in Eq. ~13!. We have not included realistic effects such
drag terms arising from the viscosity of the cytosolic flui
and we have considered also only lateral~two-dimensional!
diffusion in this work.

It is seen that curvature effects considerably modify
solution of the diffusion problem. In a biological context,
is well known that depending upon the cell type, betwe
30% and 90% of all integral proteins in the plasma me
brane are freely mobile, and, among these, the lateral di
sion rate of a protein in an intact membrane is around 10
times lower than that of the same protein embedded in s
thetic liposomes@1,2,9#. It has been suggested that this cou
be because the mobility of the proteins might be hampe
by interactions with the rigid submembrane cytoskeleton

In arriving at those diffusion rates, these authors cons
ered only the normal form of Fick’s law for flat space. Use
the correct form of Fick’s law, taking into account the var
ing curvatures of the membranes on which the protein m
ecules diffuse, must be made when seeking to explain s
theories.

III. DISCUSSION

We have shown how the curvature of the surface throu
which molecules diffuse modify the usual form of Fick
law, and the relation between the concentration of the diff
ing molecules, the diffusion constant and the time. Ma
intramembrane particles are electrically charged, and, w
they are subjected to an external electric field, move fr
their original random distribution to a more ordered distrib
tion. It would be interesting to see the effect of extern
electromagnetic fields on molecules which are electrica
charged, diffusing on curved surfaces.
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